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Figure 1: Demonstration environment for person localization via Wi-Fi.

Abstract

We present two weakly-supervised deep learning frameworks for person indoor localiza-
tion through Wi-Fi signal. These two frameworks, namely OT-Isomap and WiCluster, in
contrast with prior works, require only room/zone level labels that is easier to acquire,
compared to hard-to-acquire centimeter accuracy position labels. The OT-Isomap is a
modality-agnostic model and formulates the localization problem in the context of para-
metric manifold learning and optimal transportation. This framework allows jointly learn-
ing a low-dimensional embedding as well as correspondences with a topological map. The
WiCluster method is based on self-supervised deep clustering and metric learning models.
Inspired by the deep cluster method, the Wi-Fi signals are spatially charted and represented
in lower-dimensional space while a triplet margin-loss constrains an isometric representa-
tion of data on its 2D/3D intrinsic space. We demonstrate the meter-level accuracy of
these two methods on both real-world Wi-Fi and camera-based indoor localization.
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1. Introduction

Self-localization or localizing objects in the scene are primary tasks in navigation and surveil-
lance systems. This problem has been the subject of many studies in the machine learn-
ing community. It has been addressed in several areas such as visual odometry (Engel
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et al., 2017; Brahmbhatt et al., 2018), visual simultaneous mapping and localization (VS-
LAM) (Davison et al., 2007; Mur-Artal et al., 2015), self-localization (Arth et al., 2011;
Sattler et al., 2019; Sarlin et al., 2021), etc., and many approaches have been proposed.
This problem has been studied in different fields such as computer vision, wireless sensing,
acoustic sensing, robotics, etc. For example, recent localization methods achieve decimeter
precision in the positioning of a moving camera in an indoor environment by leveraging
the advances in neural networks (Brahmbhatt et al., 2018; Kendall et al., 2015). However,
such techniques are highly entangled with the modality of data in use; thus, applying such
specialized algorithms to other modalities is often not possible. For example, the existing
visual odometry and VSLAM techniques that rely on visual features or camera projection
models are incompatible with different sensory systems like radio frequency (RF) or audio
signals. Still, all instantiate the same problem. In contrast to existing solutions tailored for
a particular modality, our methods involve minimal assumption regarding the data modality
in use, hence they can be easily adapted to a new data modalities for localization task.

There are also many classical methods based on digital signal processing for indoor
positioning (Qian et al., 2018; Xie et al., 2019) that can determine the location of subjects
by assuming that the perturbation of the RF signal propagation, induced by the target
motion, follows a known mathematical model. In reality, such models work when the target
is within line-of-sight of the transmitter and receiver, but fail in environments with non-line-
of-sight propagation and with complex reflection patterns. Moreover, these works mostly
are applicable to RF signal and don’t generalize to other sensory inputs that may be used
for localization.

In this demonstration report, we first explain briefly the OT-Isomap (G. Zanjani et al.,
2021) and WiCluster (Karmanov et al., 2021) methods and then we show the evaluation
results on real-world Wi-Fi data and public image data. For detailed technical explanation
of each method, we refer the reader to the original papers.

2. Weakly-supervised neural frameworks

OT-Isomap (G. Zanjani et al., 2021) assumes the measured samples in input ambient
space lie on a smooth manifold; thus, the manifold is locally connected. This assumption
intuitively holds since the data is a temporal sequence that does not change much between
two consecutive instances in time. It also assumes that the topological map that represents
the geometry of the environment is known, yet no correspondences between these two spaces
are available. This map can be in the form of a 2D sketch or a floor plan of a building.
Localizing the observer on the map requires finding a mapping between input space and the
target space. OT-Isomap performs this mapping in two stages that are performed jointly.
First it maps the samples from their ambient input space into their intrinsic 2D space.
For preserving the pairwise distances and learning an isometric transformation, it uses a
neural network e.g. an MLP, while preserving the pairwise distances in the intrinsic space.
Since there is no ground truth position labels, for finding the correspondences between 2D
intrinsic space and the map of building, it employs the optimal transportation technique.
For more details, we refer to the original paper.

WiCluster (Karmanov et al., 2021) leverages the inductive prior in sequential position-
ing data, that within a small window, a sample closer in the sequence will also be closer in
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Table 1: Localization error (in meters) for 15 scenes of iGibson data set using OT-Isomap.

Environments
index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
error 0.62 1.05 0.73 0.64 0.69 0.83 1.02 1.03 0.73 0.62 0.74 0.71 0.98 1.04 1.14

position. However, enforcing this with a triplet-margin loss will only provide local structure
since it will preserve the nearest neighbours, similar to other methods like t-SNE (et al.,
2008). To enforce global structure a self-supervised criterion is added, where cluster mem-
bership in the high-dimensional embedding space must be preserved in the low-dimensional
projection. This is accomplished by extracting a set of pseudo-labels corresponding to the
clusters assigned by the K-Means algorithm to data in the high-dimensional embedding
space, projecting down to a 2/3D space with a neural network, and then predicting the as-
signed pseudo-labels with a cross-entropy loss. Performing this on a batch-level encourages
a low-rank prior in the projection. The combination of these self-supervised criteria results
in a learnt mapping that preserves isometry. In the weakly-supervised regime a correspond-
ing map of the environment is added, and predictions that fall outside of this are penalised
relative to their extent outside of the map. For more details, we refer to the original paper.

3. Demonstrations

Camera-based indoor localization: Our deep learning frameworks have minimal as-
sumption about the data modality in use and are applicable to a diverse sensory inputs. To
demonstrate this capability, we setup an experiments with vision sensors for indoor local-
ization of an agent equipped with camera. In this experiments, we applied the OT-Isomap
on panorama image sequences of several indoor spaces of iGibson dataset (Shen et al.,
2020)(see Appendix). The data set consists of indoor 3D scans of 15 buildings that can be
explored interactively (Xia et al., 2020). The scans are created from real homes and offices.
Figure 2 shows an example of constructed panorama image, the ground truth and predicted
trajectories for an environment, using OT-Isomap. Table 1 shows the localization error of
OT-Isomap for these 15 environments. More results added to the Appendix.

Figure 2: An example of the iGibson environment; (left) the quadruple-view at the location of
observer and the constructed panorama image; (middle) a ground truth trajectory; (right) prediction

Passive Wi-Fi indoor localization: We setup a real-world deployment with a 2D
and 3D data acquisition from two different environments. For the 2D environment of size
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15×21 meters in a building, three receivers and one transmitter for a large multi-room space
where most areas lack line-of-sight have been used. We collected a data set by using four
commercial IEEE 802.11 access points (AP), operating in the 5GHz band. We use three
receivers with eight antennas each, and a transmitter with a single antenna. Each receiver
collects the Channel State Information (CSI) at periodic intervals. The CSI represents
the channel between the transmitter antenna and each of its 8 receiver antennas, across
208 frequency tones that span the transmission bandwidth. Hence, the CSI is represented
as a multidimensional tensor of complex numbers of dimension 8 × 1× 208 per each WiFi
packet. Table 2 shows the error of WiCluster for person localization in different zones. More
experimental results on a different environment and 3D building added to the Appendix.

Table 2: Localization of a person in Wi-Fi signal using WiCluster; (left) mean errors in meters for
different zones; (middle) the floor plan image and the defined zones; (right) prediction and ground
truth positions.

Zone no. WiCluster
Train - walkTest - walkTest - run

1 0.91 0.81 0.74

2 0.82 0.85 0.91

5 0.89 1.40 1.29

6 1.04 1.12 1.31

7 1.99 2.26 2.08

9 1.08 1.29 1.24

11 1.05 1.24 1.28

12 1.29 1.30 1.26

13 1.13 1.05 1.27

average 1.13 1.26 1.26

4. Discussions and Conclusions

We demonstrated two deep learning frameworks that learn the mapping of indoor mea-
sured data on the floor plan of a building. Both frameworks learn a 2D/3D embedding
space that are isometric and topologically aligned with the given floor plan. Since the
proposed frameworks does not use hard-to-acquire position labels, they can facilitate the
real-world applications of new emerging sensing data modalities such as Wi-Fi signal for
indoor localization.
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